Tychonoff's Theorem in the Framework of Formal Topologies
نویسندگان
چکیده
In this paper we give a constructive proof of the pointfree version of Tychonoff’s theorem within formal topology, using ideas from Coquand’s proof in [7]. To deal with pointfree topology Coquand uses Johnstone’s coverages. Because of the representation theorem in [3], from a mathematical viewpoint these structures are equivalent to formal topologies but there is an essential difference also. Namely, formal topologies have been developed within Martin Löf’s constructive type theory (cf. [15]), which thus gives a direct way of formalizing them (cf. [4]). The most important aspect of our proof is that it is based on an inductive definition of the topological product of formal topologies. This fact allows us to transform Coquand’s proof into a proof by structural induction on the last rule applied in a derivation of a cover. The inductive generation of a cover, together with a modification of the inductive property proposed by Coquand, makes it possible to formulate our proof of Tychonoff’s theorem in constructive type theory. There is thus a clear difference to earlier localic proofs of Tychonoff’s theorem known in the literature (cf. [9], [10], [12], [14]). Indeed we not only avoid to use the axiom of choice, but reach constructiveness in a very strong sense. Namely, our proof of Tychonoff’s theorem supplies an algorithm which, given a cover of the product space, computes a finite subcover, provided that there exists a similar algorithm for each component space. Since type theory has been implemented on a computer (cf. [18]), an eventual strict formalization of our proof will at the same time be a computer program that executes the task of finding a finite subcover. The paper is organized as follows. In the first part we recall the basic definitions and motivations of formal topologies and introduce in this framework
منابع مشابه
On Tychonoff's type theorem via grills
Let ${X_{alpha}:alphainLambda}$ be a collection of topological spaces, and $mathcal {G}_{alpha}$ be a grill on $X_{alpha}$ for each $alphainLambda$. We consider Tychonoffrq{}s type Theorem for $X=prod_{alphainLambda}X_{alpha}$ via the above grills and a natural grill on $X$ related to these grills, and present a simple proof to this theorem. This immediately yields the classical theorem...
متن کاملA Completeness theorem for Formal Topologies
The main mathematical result of this work is a quite simple formulation and proof of a Rasiowa-Sikorski-like theorem for countable lattices. Then the paper suggests an interpretation of this mathematical result as a completeness theorem for the formal topologies introduced by G. Sambin in order to provide a constructive approach to topology which is expressible within Martin Löf’s intuitionisti...
متن کاملA short introduction to two approaches in formal verification of security protocols: model checking and theorem proving
In this paper, we shortly review two formal approaches in verification of security protocols; model checking and theorem proving. Model checking is based on studying the behavior of protocols via generating all different behaviors of a protocol and checking whether the desired goals are satisfied in all instances or not. We investigate Scyther operational semantics as n example of this...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Log.
دوره 62 شماره
صفحات -
تاریخ انتشار 1997